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Definition. For graph G,let

a(G) = the largest size of the independent set (IS) in G,
w(G) = the largest size of the clique in G,

X(G) = the chromatic number of G.

Factl. (1) x(G) 2 w(G); (2) [V(G)| < a(G)x(G).
Definition. A graph is perfect if for any induced subgraph H of G,we have x(H) = w(H).
Fact2. Bipartite graph G is perfect.

Lemmal. If G is bipartite,then x(G°) = w(G°)

Proof. Let G = (A, B),|A| =n,|B| =m, M and M* are the matching and the maximum
matching of G, VC and VC* are the vertex-cover and the minimum vertex-cover of GG,then
we have

o n+m—|M|=>x(G);
e w(G)>n+m—|VC|.

So

Konig’s Theorem

n+m—|M*| > x(G°) > w(G°) >n+m— |VC¥| n+m—|M*|.

Then we get
X(G°) =w(G)=n+m—|M*|n+m—|VC*|.

Remark: Konig’s Theorem: For bipartite graph G, max|M| = min|V C|.

Thm1(Weak Perfect Graph Theorem:) G is perfect iff G¢ is perfect.
Proof. We use the Theorem:

G is perfect iff for any induced subgraph H of G, |V(H)| < a(H)w(H).(We will prove it
later.)

G is perfect < for any induced subgraph H of G,|V(H)| < a(H)w(H) < for any induced
subgraph H€¢ of G°,|V(H®)| < w(H®)a(H®) < G° is perfect. 1
Thm2: G is perfect iff for any induced subgraph H of G, [V(H)| < a(H)w(H) .
Proof.

=: G is perfect, then for any induced subgraph H,x(H) = w(H). By Factl, |V(G)| <
a(G)x(G) = a(H)w(H).

<: By induction on |V (G)].

Suppose every graph with less than n vertices satisfying (x) is perfect.



Suppose G satisfies (%) but is not perfect,then x(G) > w(G) because (*) is monotone, that
is if G; C G2 and G3 has (), then G has (x).

We will show n = |V(G)| > a(G)w(G) + 1.

Claim1: Suppose U is an IS in G, then x(G\U) = w(G\ U) = w(G).
Proof. 1It’s easy to get x(G \ U) = w(G \ U) by induction.
Clearly, w(G\ U) < w(G).

Suppose not “=", then
X(G\U) =w(G\U) <w(G) -1 < (x(G)—1) - L.

And we have x(G) < x(G\U) + 1.
So x(G) — 1 < x(G) — 2. A contradiction!
That means w(G \ U) = w(G).

From now on, we denote w(G) = w, a(G) = a.

Claim2: Let U be an IS and K be a clique with size w in G, if K N U = (), then in any
w—coloring of G\ U, K intersects in every color class by exactly one vertex; if K N U # ()
(ie. [KNU|=1), then K intersects all but one of the color classes of any w—coloring of
G\ U by exactly one vertex.

Let Uy = {v1,v2,...,0,} be an IS of G with size a = o(G).

Let Ug—1)wt1 Ui—1)wt2 " s Uli—1)wtw be the color-classes of a w—coloring in G\ {v;},
1=1,2---,«a. All together, we have aw + 1 IS.

For 0 < i < aw, let K; be a clique in G \ U; of size w.

Claim3: Vi # j,|K;NU;| =1,(i,j =0,1,2,--- , aw).

Proof.

(1) fori:O,j = (p_ 1)W+Q7p: 1727"' , L, 4 = 1727"' , W,

since Ko NUy =0, so KoN{vp} = 0. By Claim2, |KoNUj;| = 1.

(2) fOI'j :O,Z: (p_ 1)w+Q7p: 1727'” , O, q = 1727”' , W,

since v, € K; (By Claim2) and v, € Ky, so K; NUy # 0. Since |K; N Up| is not more than 1,
then |Kz N U(]| =1.

(3) for i = (pl - 1)&1 + QI7j = (p2 - 1)(4) + q2,p1,p2 = 1727"' , X, 41,42 = 172a' T, W, and
i # 7,

when p1 = pg, since K; € G\U;, then K;NU; = 0. So | K;NU(p, —1yw 115 [KiNUpy—1ywal, - -+ 5 KGN
Ulps—1)w+w| all are one, that is [K; N Uj| = 1.



when py # p1, if K;NU; =0, then v,, € K;. But vy, € K;, a contradiction! So |K;NU;| = 1.

Let A = (ai;) is a n x (aw + 1) matrix with

P 1, ifUZ'GUj,
Y1 0, otherwise.

Let B = (b;j) is a (aw + 1) X n matrix with

b — 1, if’t)jEKi,
1 0, otherwise.

Then
0 1 1
1 0 1
BA=1. =J-1
11 (aw+1)(aw+1)
So n > rank(A) > rank(BA) = aw + 1. This contradiction completes the proof. 1
e Remark:
a+b b .- b
b a+b --- b
Det(al, +bJ,) =| . . |l =(a+ nb)a”f1
b b -+ a+bd

So Det(BA) = aw(—1)* # 0. It means that rank(BA) = aw + 1.



