Combinatorial Networks May 20th-21st,Wednesday

- - $\chi(G)$ = the chromatic number of G.
- Fact1. (1) $\chi(G) \ge \omega(G)$; (2) $|V(G)| \le \alpha(G)\chi(G)$.
- **Definition.** A graph is *perfect* if for any induced subgraph H of G, we have $\chi(H) = \omega(H)$.
- Fact2. Bipartite graph G is perfect.
- Lemma 1. If G is bipartite, then $\chi(G^c) = \omega(G^c)$

Proof. Let G = (A, B), |A| = n, |B| = m, M and M^* are the matching and the maximum matching of G, VC and VC^{*} are the vertex-cover and the minimum vertex-cover of G, then we have

- $n+m-|M| \ge \chi(G^c);$
- $\omega(G^c) \ge n + m |VC|$.

So

$$n+m-|M^*| \ge \chi(G^c) \ge \omega(G^c) \ge n+m-|VC^*| \stackrel{\text{König's Theorem}}{=} n+m-|M^*|.$$

Then we get

$$\chi(G^{c}) = \omega(G^{c}) = n + m - |M^{*}|n + m - |VC^{*}|.$$

- **Remark:** König's Theorem: For bipartite graph G, max $|M| = \min |VC|$.
- Thm1(Weak Perfect Graph Theorem:) G is perfect iff G^c is perfect.
 - *Proof.* We use the Theorem:

G is perfect iff for any induced subgraph H of G, $|V(H)| \leq \alpha(H)\omega(H)$. (We will prove it later.)

G is perfect \Leftrightarrow for any induced subgraph H of $G, |V(H)| \leq \alpha(H)\omega(H) \Leftrightarrow$ for any induced subgraph H^c of $G^c, |V(H^c)| \leq \omega(H^c)\alpha(H^c) \Leftrightarrow G^c$ is perfect.

• Thm2: G is perfect iff for any induced subgraph H of G, $|V(H)| \le \alpha(H)\omega(H)_*$.

Proof.

⇒: G is perfect, then for any induced subgraph $H, \chi(H) = \omega(H)$. By Fact1, $|V(G)| \le \alpha(G)\chi(G) = \alpha(H)\omega(H)$.

 \Leftarrow : By induction on |V(G)|.

Suppose every graph with less than n vertices satisfying (*) is perfect.

Suppose G satisfies (*) but is not perfect, then $\chi(G) > \omega(G)$ because (*) is monotone, that is **if** $G_1 \subseteq G_2$ **and** G_2 **has** (*), **then** G_1 **has** (*). We will show $n = |V(G)| \ge \alpha(G)\omega(G) + 1$.

Claim1: Suppose U is an IS in G, then χ(G \ U) = ω(G \ U) = ω(G).
Proof. It's easy to get χ(G \ U) = ω(G \ U) by induction.
Clearly, ω(G \ U) ≤ ω(G).
Suppose not "=", then

$$\chi(G \setminus U) = \omega(G \setminus U) \le \omega(G) - 1 \le (\chi(G) - 1) - 1.$$

And we have $\chi(G) \leq \chi(G \setminus U) + 1$. So $\chi(G) - 1 \leq \chi(G) - 2$. A contradiction! That means $\omega(G \setminus U) = \omega(G)$.

From now on, we denote $\omega(G) = \omega, \alpha(G) = \alpha$.

• Claim2: Let U be an IS and K be a clique with size ω in G, if $K \cap U = \emptyset$, then in any ω -coloring of $G \setminus U$, K intersects in every color class by exactly one vertex; if $K \cap U \neq \emptyset$ (ie. $|K \cap U| = 1$), then K intersects all but one of the color classes of any ω -coloring of $G \setminus U$ by exactly one vertex.

Let $U_0 = \{v_1, v_2, \dots, v_{\alpha}\}$ be an IS of G with size $\alpha = \alpha(G)$. Let $U_{(i-1)\omega+1}, U_{(i-1)\omega+2}, \dots, U_{(i-1)\omega+\omega}$ be the color-classes of a ω -coloring in $G \setminus \{v_i\}$, $i = 1, 2 \cdots, \alpha$. All together, we have $\alpha \omega + 1$ IS.

For $0 \leq i \leq \alpha \omega$, let K_i be a clique in $G \setminus U_i$ of size ω .

• Claim3: $\forall i \neq j, |K_i \cap U_j| = 1, (i, j = 0, 1, 2, \dots, \alpha \omega).$

Proof.

(1) for $i = 0, j = (p - 1)\omega + q, p = 1, 2, \cdots, \alpha, q = 1, 2, \cdots, \omega$, since $K_0 \cap U_0 = \emptyset$, so $K_0 \cap \{v_p\} = \emptyset$. By Claim2, $|K_0 \cap U_j| = 1$. (2) for $j = 0, i = (p - 1)\omega + q, p = 1, 2, \cdots, \alpha, q = 1, 2, \cdots, \omega$,

since $v_p \in K_i$ (By Claim2) and $v_p \in K_0$, so $K_i \cap U_0 \neq \emptyset$. Since $|K_i \cap U_0|$ is not more than 1, then $|K_i \cap U_0| = 1$.

(3) for $i = (p_1 - 1)\omega + q_1, j = (p_2 - 1)\omega + q_2, p_1, p_2 = 1, 2, \dots, \alpha, q_1, q_2 = 1, 2, \dots, \omega$, and $i \neq j$,

when $p_1 = p_2$, since $K_i \subseteq G \setminus U_i$, then $K_i \cap U_i = \emptyset$. So $|K_i \cap U_{(p_2-1)\omega+1}|$, $|K_i \cap U_{(p_2-1)\omega+2}|$, \cdots , $|K_i \cap U_{(p_2-1)\omega+\omega}|$ all are one, that is $|K_i \cap U_j| = 1$.

when $p_2 \neq p_1$, if $K_i \cap U_j = \emptyset$, then $v_{p_2} \in K_i$. But $v_{p_1} \in K_i$, a contradiction! So $|K_i \cap U_j| = 1$.

Let $A = (a_{ij})$ is a $n \times (\alpha \omega + 1)$ matrix with

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \in U_j, \\ 0, & \text{otherwise.} \end{cases}$$

Let $B = (b_{ij})$ is a $(\alpha \omega + 1) \times n$ matrix with

$$b_{ij} = \begin{cases} 1, & \text{if } v_j \in K_i, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$BA = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}_{(\alpha\omega+1)(\alpha\omega+1)} = J - I$$

So $n \ge \operatorname{rank}(A) \ge \operatorname{rank}(BA) = \alpha \omega + 1$. This contradiction completes the proof.

• Remark:

$$Det(aI_n + bJ_n) = \begin{vmatrix} a+b & b & \cdots & b \\ b & a+b & \cdots & b \\ \vdots & \vdots & & \vdots \\ b & b & \cdots & a+b \end{vmatrix} = (a+nb)a^{n-1}$$

So $Det(BA) = \alpha \omega(-1)^{\alpha \omega} \neq 0$. It means that $rank(BA) = \alpha \omega + 1$.